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Abstract: In the world of Data Science and machine 
learning everything starts with data and how well one 
can use it to get the desired output. But what can be 
done when enough data is not present. Obviously, 
overall result will get impacted because of scarcity of 
data. Hence, to resolve this problem, data augmentation 
comes into picture which helps to increase dataset size 
by augmenting it. Data augmentation is an assortment of 
techniques that facilitates to automatically generate high 
quality data with the help of existing data. In the field of 
Natural Language Processing (NLP) is difficult to 
augment the text due to huge complexity of language. 
The process of augmenting text data is more challenging 
and not as straightforward as one might expect. In this 
study, the way of doing NLP data augmentation and 
libraries available for it is explored. Data augmentation 
techniques, comparison and features of the python 
libraries which can be used for data augmentation is 
discussed. It will help researchers and data scientist to 
decide which library to use for their job. 
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I. INTRODUCTION 
Data is essential for machine learning models to perform 
optimally, but annotating a large amount of data can be a 
costly endeavor. It is important to not only focus on having 
a lot of data but having the right data and the right 
techniques to ensure the best performance possible. 
Therefore, proper data augmentation is useful to boost up 
model performance [1]. Augmentation is an immensely 
popular technique in the computer vision field. It involves 
the alteration of an image to create a new one. This can be 
done in many ways, such as flipping, adding noise, 
adjusting the brightness and contrast, and cropping. 
Augmentation can be used to help reduce over fitting, 
making models more robust. It is established that 
augmentation is one of the solutions to the success of 
computer vision models. 

In natural language processing (NLP), text augmentation is 
a difficult task to undertake due to the complexity of the 
language. While some words can be replaced with others, 
such as a, an, the, this is often not sufficient to adequately 
enhance a piece of text. Also, not every word has a synonym 
[2]. The complexities of language are vast, making it 
difficult to know which words to choose when attempting to 
alter the meaning of a sentence. Even the slightest variation 
in word choice can have a remarkable effect on the context 
of a statement. Additionally, the context of the sentence 
must be considered to ensure that the meaning is preserved. 
It is for these reasons that text augmentation is especially 
difficult in the field of NLP. Alternatively, augmented 
images can be generated relatively easily using computer 
vision. Even when noise is introduced or portions of the 
image are cropped out, the model can still classify the image 
correctly. Data Augmentation (DA) Technique is an 
effective way of increasing the size and quality of a dataset 
without having to manually collect more data. The data 
needs to be altered to preserve the class categories for better 
performance in the classification task [3]. 
Data augmentation is a powerful tool for improving the 
performance of machine learning models. By increasing the 
size of the training data, it can help to create better models 
that are more robust and perform better on unseen data. 
However, when augmenting data, it is important to ensure 
that the distribution of the augmented data generated is 
neither too similar nor too different from the original as this 
can lead to over fitting or inferior performance. Effective 
data augmentation approaches should aim to achieve a 
balance between the two, as this can help to ensure that the 
model has seen a variety of different data points.  
If you have a tiny dataset, data augmentation can be a 
particularly effective way of increasing the size of the 
training set. This can help to improve the model's 
performance and help to reduce the risk of over fitting. 
Additionally, data augmentation can help to ensure that the 
model has seen a variety of different data points, which can 
help to improve the model's generalization performance. By 
making sure that the data is neither too similar nor too 
different from the original, it can help to ensure that the 
model is able to make accurate predictions on unseen data. 
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It may be a promising idea to apply data augmentation 
approaches for small dataset with aim to reduce over fitting 
in machine learning models. 
 
 
 

II. TEXT DATA AUGMENTATION: 

Data Augmentation can create more data for machine 
learning project. In the field of text data augmentation there 
are many methods available on character, word and sentence 
level to generate quality data without losing the meaning 
and context of original text. It gives a promising result in 
terms of quality as well as quantity of data if done wisely 
based on requirement and available data. There are various 
techniques to do so. Let’s discuss them in detail. 

 
1.1 Text Data Augmentation Methods: 

 
   Fig 1. Data Augmentation Methods in Feature and Data Space 
 
1.1.1 Data Augmentation in Feature Space 
In the feature space, data augmentation is the process of 
transforming the input data into latent vector representations 
(feature form) of the inputs. The feature space has two types 
of data augmentation: noise induction and interpolation [4]. 
 
Noise Induction: In the data space, noise can be introduced 
in many ways, and the feature space is no different. It is 
possible to introduce random multiplicative and additive 
noise to feature representations, which can give a variety of 
results. These noise variants can be used to measure the 
robustness of a model, as well as to improve performance on 
certain tasks. Additionally, artificially introducing noise can 
also help to reduce the risk of over fitting, as it can help to 
better generalize the learned model. 
 
Interpolation Methods: In this method a new sentence can 
be created by taking the hidden states of two sentences and 

combining them, resulting in a sentence that retains the 
meaning of both original sentences. 
 
 
1.1.2 Data Augmentation in Data Space 
Data augmentation in the data space allows for the 
transformation of raw data into a more readable and usable 
form. There are four types of data augmentation techniques 
available in the data space: character level, word level, 
phrase and sentence level, and document level [5]. 
 
Character Level 
In the case of character-level augmentation creating new 
training samples from existing ones by changing single 
characters. This is done by randomly selecting characters 
from the existing sample and replacing them with new ones. 
This technique can be especially useful when the dataset is 
small or limited. By randomly changing characters, a variety 

Data Augmentation Methods

Feature Space

Noise 
Induction

Interpolation 
Methods

Data Space

Character Level

Noise 
Induction

Rule-
based

Word Level

Noise 
Induction

Synonym 
Replacem

ent

Embeddin
g 

Replacem
ent

Replacem
ent by 

language 
models

Phrase or Sentence 
Level

Struture 
BasedTra
nsformati

on

Interpolat
ion

Document Level

Round 
trip 

translatio
n

Generativ
e Models



International Journal of Engineering Applied Sciences and Technology, 2023 
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 47-56 

Published Online June 2023 in IJEAST (http://www.ijeast.com) 
 

49 

of new samples can be created that can help model to better 
generalize and learn from different types of data.  
 
• Noise Induction: It involves random character 

deletion, swap, and insertion. 
• Rule-based Transformations: Regular expressions 

can be used to insert spelling mistakes, alter data, 
abbreviate entity names, and insert spelling mistakes. 

 
Word Level 
In this type of data augmentation, single words are changed 

entirely to create new training samples from existing 
ones [6]. 

• Noise Induction:"Unigram noising" involves replacing 
words in input data with another word with a certain 
probability. Using "blank noise", words are replaced 
with "_", while random word substitutions and 
deletions are also methods of inducing noise. 

• Synonym Replacement: In this very popular form of 
data augmentation, certain words are replaced with 
synonyms in text instances. Synonym replacement is 
usually performed using knowledge bases like 
WordNet. 

• Embedding Replacement: Comparable to synonym 
substitution, embedding replacement methods seek to 
find words that fit into the textual context without 
changing the fundamental meaning of the text. This is 
done by transforming words into a latent representation 
space, where words with similar contexts are closer 
together. Then, a word is replaced by the one which is 
closest to it in the latent representation space. This 
ensures that the contextual meaning of the text remains 
the same while still providing the desired level of 
variation. 

• Replacement by Language Models: Language models 
represent language by predicting subsequent or missing 
words based on the previous or surrounding context. 
This allows them to be used to filter unfitting words and 
produce more accurate results than those obtained via 
global context-based embedding replacements. By 
focusing on the local context, language models can 
improve the accuracy of language understanding and 
filtering of bad words produced with the embedding 
replacement techniques. 

 
Phrase and Sentence Level 
This type of data augmentation consists of changing 
sentence structures to create new training samples [15]. 
• Structure-based Transformation: The structure-based 

approach to data augmentation involves the use of 
certain features or components of the structures to 
generate modified texts. Grammatical formalities, such 
as dependency and constituent grammars or POS-tags, 
can be used as the basis for such structures. One 

method of data augmentation is cropping sentences and 
putting the focus on the subjects and objects. The 
'rotation' technique is a flexible method that involves 
moving fragments of words around. This approach is 
useful as it can generate new sentences from existing 
ones, allowing for the creation of a larger data set. It 
also allows for different contexts and relationships to be 
explored.  

• Interpolation: This method of natural language 
processing works by substituting substructures of the 
training examples that have the same tagged label. For 
instance, an example sentence substructure of "a [DT] 
chocolate [NN]" (where [DT] and [NN] are Determiner 
and Singular Noun respectively) can be replaced with a 
new sentence substructure of "a [DT] cat [NN]" from 
another instance, resulting in an interpolation. This 
substitution process allows for additional insight as to 
the relationship between different words with the same 
tag. By replacing words with similar tags, it can be 
determined how two words might be related to one 
another. Additionally, this process helps to create a 
larger, more diverse dataset that can be used to train a 
machine learning model. 

 
Document Level 
The purpose of this type of data augmentation is to create 
new training samples from existing ones by modifying 
entire sentences in the documents. 
• Round-trip Translation: Round-trip translation is an 

approach to creating paraphrases with the assistance of 
translation models. In this approach, a word, phrase, 
sentence, or document is translated from its source 
language into another language (forward translation) 
and then reversed back into the source language (back-
translation). This method allows to produce multiple 
paraphrases that adhere to the same meaning of the 
original source, while also providing a unique spin on 
the wording. As such, round-trip translation is a 
valuable tool for creating more accurate translations 
and paraphrases. 

• Generative Methods: A significant increase in 
language generation capabilities allowed the current 
models to create very diverse texts that can incorporate 
new information, which in turn led to a significant 
increase in text generation capabilities. A document-
level data augmentation method uses training language 
models (VAEs, RNNs, Transformers) to produce 
documents that look like the training data.[16] 

 
III. TEXT DATA AUGMENTATION LIBRARIES 

There are several types of data augmentation libraries 
present based on the feature types and tasks user want to 
perform. We'll look at some of them: 
a. Text Attack 

https://arxiv.org/abs/1711.02173
https://arxiv.org/abs/1812.04718
https://arxiv.org/abs/1703.02573
https://aclanthology.org/P11-2047/
https://dl.acm.org/doi/10.1145/3357384.3358040
https://arxiv.org/abs/1804.07998
https://arxiv.org/abs/1903.09460
https://arxiv.org/abs/2101.00411
https://www.semanticscholar.org/paper/The-Efficacy-of-Round-trip-Translation-for-MT/2006dd307e7fb67d731e3a984dea405d25b250ac
https://dl.acm.org/doi/abs/10.1145/3366424.3383552
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b. NLP Aug 
c. Google Trans 
d. Text Augment 
e. Aug Ly 
f. Parrot Paraphraser 
g. Pegasus Paraphraser 
 
a. Text Attack 
It is a Python library. It is used for combative attacks, 
combative training, and data augmentation in NLP. Text 
attack has a text attack. Augmenter class which provides six 
different approaches for data augmentation[7]. 
 
Text attack installation 
!pip install text attack 
 

i. Word Net Augmenter 
The WordNet augmenter identifies synonyms from 
WordNet and replaces them with the appropriate words. 
 
Implementation: 
From text attack.augmentation import WordNetAugmenter 
orignal_text = "Early to bed and early to rise makes a man 
healthy, wealthy and wise" 
text_attack_wordnet = WordNetAugmenter() 
augmented_text_attack_wordnet.augment(orignal_text) 
print(augumented_text) 
 
OUTPUT 
Original Text:‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text: [‘Early to bed and early to rise makes a 
man healthful, wealthy and wise’] 
 

ii. Embedding Augmenter  
This augmenter replaces words with neighbors in the 
counter-fitted embedding space to ensure their consine 
similarity is at least 0.8 
 
Implementation: 
from textattack.augmentation import EmbeddingAugmenter 
text_attack_embed = EmbeddingAugmenter() 
augmented_text=text_attack_embed.augment(orignal_text) 
print(augumented_text) 
 
OUTPUT 
Original Text:‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text: [‘Early to bed and early to wake up 
makes a man healthy, wealthy and wise’] 
 
iii. Easy Data Augmenter  

EDA augments text by replacing words, adding words, and 
removing words. 
 

Implementation: 
from textattack.augmentation import EasyDataAugmenter 
text_attack_eda = EasyDataAugmenter() 
text_attack_eda.augment(text) 
Original Text: ‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text: [‘Early to bed early to rise makes a man 
healthy, wealthy and wise’, 
‘Early to bed and early to rise makes a man healthy, 
prosperous and wise’, 
‘Early to bed and early to rise makes a man healthy, wealthy 
and intelligent’, 
‘Early to bed and early to rise makes a gentle man strong, 
wealthy and intelligent’] 
 

iv. Char Swap Augmenter  
As parts of the augmentation process, it replaces, deletes, 
inserts, and swaps adjacent characters as needed. 
 
Implementation: 
from textattack.augmentation import CharSwapAugmenter 
text_attack_charswap = CharSwapAugmenter() 
text_attack_charswap.augment(text) 
Original Text:‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text: ‘Early to bed and early to rise amkes a 
man healthy, wealthy and wise’ 
 

v. Check List Augmenter  
Names, locations, and numbers are compressed/extended 
and substituted in this augmenter. 
 
Implementation: 
from textattack.augmentation import Check List Augmenter 
text_attack_checklist = Check List Augmenter() 
text_attack_checklist.augment(text) 
 
Original Text: ‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
 
Augmented Text: ‘Early to bed and early to rise makes a 
man healthy, wealthy and wise’ 
 
vi. CLARE Augmenter 

Using a pre-trained masked language model, it augments 
text by replacing, inserting, and merging. 
 
Implementation: 
from textattack.augmentation import CLAREAugmenter 
text_attack_clare = CLAREAugmenter() 
print(text_attack_clare.augment(text)) 
 
Original Text:‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
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Augmented Text: ‘Early to bed and early to rise makes a 
man extremely healthy, wealthy and wise’ 
 

b. NLPAug 
It is a python-based augmentation library for machine 
learning experiments based on text. NLP Aug is a tool that 
can assist in this process by enhancing natural language 
processing (NLP) for machine learning applications. 
Besides generating textual data for training and testing 
models, it can generate adversarial examples that can be 
used to identify and prevent adversarial attacks. NLP Aug is 
a powerful tool for improving deep learning model 

performance and ensuring the security of machine learning 
applications. Let’s look at how to use this library to enhance 
data.[8] 
 
NLP Aug installation 
!pip install nlpaug 
 
NLP Aug provides basically three distinct types of 
augmentation based on character, word and sentence 
augmentation. Below is a list of available augmenters 
mapped with the type of augmentation: 

 
Table 1.NLPAug Augmenters and its description 

NLP Aug Augmenters Type of Augmentation 
Antonym Aug Substitute opposite meaning word according to WordNet 

antonym 
Random Aug Apply insert, substitute, swap, delete augmentation 

randomly 
Character Keyboard Aug It substitutes by Simulating keyboard distance error 
Ocr Aug It substitutes by OCR engine error 
Word Embs Aug It substitutes, insert using word2vec, GloVe, or fast text 

embeddings to apply augmentation 
 
i. Antonym Aug: 
Implementation: 
import nlpaug.augmenter.word as nawordaug = naword.Ant
onymAug(name='Antonym_Aug', aug_min=1, aug_max=10
, aug_p=0.3, lang='eng', stopwords=None, tokenizer=None, 
revee_=None, stopwords_regex=None, verbose=0) 
test_sentence_aug = aug.augment("too dark") 
print(test_sentence_aug) 
 
Original Text:"too dark" 
Augmented Text:['too light'] 
 
ii. Random Aug: 
Implentation: 
import nlpaug.augmenter.word as naword 
Text = 'Early to bed and early to rise makes a man healthy, 
wealthy and wise' 
aug = naword.RandomWordAug(action='delete', name='Ran
domWord_Aug', aug_min=1, aug_max=10, aug_p=0.3, stop
words=None, target_words=None, tokenizer=None, reverse
_tokenizer=None, stopwords_regex=None, verbose=0) 
output = aug.augment (Text) 
print(output) 
 
Original Text: ‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text:['To and to rise makes a, wealthy and 
wise'] 
 
iii. Keyboard Aug: 

Implementation: 
import nlpaug.augmenter.char as na 
Text='Early to bed and early to rise makes a man healthy,we
althy and wise' 
aug = na.KeyboardAug(name='Keyboard_Aug', aug_char_
min=1, aug_char_max=10, aug_char_p=0.3, aug_word_p=0
.3, aug_word_min=1, aug_word_max=10, stopwords=None,
 tokenizer=None, reverse_tokenizer=None, include_special_
char=True, include_numeric=True, include_upper_case=Tru
e, lang='en', verbose=0, stopwords_regex=None, model_pat
h=None, min_char=4) 
output = aug.augment(Text) 
print(output) 
Original Text:‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text:['EaGlJ to bed and eq$ly to ejsemsJes a 
man healthy, wealthy and SKse'] 
 
iv. Ocr Aug: 
Implementation: 
import nlpaug. augmenter. char as na 
Text = 'Early to bed and early to rise makes a man healthy, 
wealthy and wise' 
aug = na.OcrAug(name='OCR_Aug', aug_char_min=1, aug
_char_max=10, aug_char_p=0.3, aug_word_p=0.3, aug_wor
d_min=1,  
                 aug_word_max=10, stopwords=None, tokenizer=
None, reverse_tokenizer=None, verbose=0, stopwords_rege
x=None,  
                 min_char=1) 
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output = aug.augment(Text) 
print(output) 
 
Original Text: ‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text: ['Early tu bed and eak1y to rise makes a 
man hea1thy, wealthy and wise'] 
 
v. Word Embs Aug 
Implementation: 
!pip install transformers 
import nlpaug. augmenter. word as naword 
TOPK=20 #default=100 
ACT = 'insert' #"substitute" 
Text = 'Early to bed and early to rise makes a man healthy, 
wealthy and wise' 
aug_bert = naword.ContextualWordEmbsAug(model_path='
distilbert-base-uncased',action=ACT, top_k=TOPK) 
for i in range(7): 
output = aug_bert.augment(Text) 
print(output) 
 
Original Text: ‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
 
Augmented Text: 
['early steps to bed early and early to rise sun makes a man 
very healthy, wealthy citizen and wise'] 
['early to bed and very early to early rise he makes up a man 
reasonably healthy, wealthy and wise'] 
['early transition to bed habits and sometime early to mid 
rise makes a man healthy, wealthy looking and wise'] 
['early to bed hours and relatively early to rise makes a rich 
man reasonably healthy, wealthy and relatively wise'] 
['happy early retirement to reach bed rest and early to rise 
makes a healthy man healthy, wealthy and wise'] 
['early exposure to bed and early to nightly rise gradually 
makes that a man grow healthy, wealthy and wise'] 
['mornings early to bed and early to dusk rise makes a man 
extremely healthy, economically wealthy and morally wise'] 
 
c. Google trans 
 Itis built on top of Google Translate API. This uses Google 
Translate Ajax API  for language detection and translation. 
[9] 
 
Installation 
!pip install google trans 
 
Usage 
The key parameters to translate() method are: 
src: source language. Optional parameter as googletrans will 
detect it. 
dest: destination language. Mandatory parameter. 

text: the text which has to be translated from source 
language to the destination language. Mandatory parameter. 
 
 
Implementation: 
Translation from English to Chinese 
from googletrans import Translator 
translator = Translator() 
my_translation = translator. 
translate("Early to bed and early to rise makes a man wealth
y, healthy and wise.", src='en', dest='zh-CN') 
print(my_translation.text) 
OUTPUT: 
早睡早起使人富有、健康和聪明。 
 
Translation from Chinese back to English 
From google trans import Translator 
translator = Translator() 
my_translation = translator. 
translate("早睡早起使人富有、健康和聪明。", src='zh-
CN', dest='en') 
print(my_translation.text) 
 
OUTPUT: 
Early to bed and early to rise makes a man rich, healthy and 
wise. 
As in the above implementation, the given text is first 
translated from English to Chinese and then translated back 
to English. During this back translation, there is a slight 
change in the sentence between the original text and the 
back-translated text, but the overall meaning of the sentence 
is still retained. 
Original Text: ‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text: ‘Early to bed and early to rise makes a 
man rich, healthy and wise.’ 
 
d. Text Augment 
The Text Augment library provides text augmentation for 
natural language processing use in Python. It enables users 
to add more data quickly and easily to their existing 
datasets. Text Augment provides a wide range of features 
including text generation, text substitution, text insertion, 
and text deletion. Text Augment works with the help of 
libraries like NLTK, Gensim, and Text Blob and works well 
with them.[11] 
 
Installation: 
pip install num pynltkgensim text blobgoogletrans text 
augment 
 
i. Synonym Replacement 
Implementation: 
from text augment import EDA 

https://translate.google.com/
https://translate.google.com/
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eda_augment= EDA() 
Text = ‘Early to bed and early to rise makes a man healthy, 
wealthy and wise’ 
Text_augument_syn=eda_augment.synonym_replacement(
Text) 
print(Text_augument_syn) 
 
OUTPUT 
Original Text:‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text: ‘Early to bed and early to rise makes a 
man nutritious, wealthy and wise’ 
 
ii. Random Deletion 
Implementation: 
from text augment import EDA 
eda_augment= EDA() 
 
Text = ‘Early to bed and early to rise makes a man healthy, 
wealthy and wise’ 
 
random_del_augment=eda_augment.random_deletion(Text, 
p=0.2) 
 
print (random_del_augment) 
 
OUTPUT 
Original Text:‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text: ‘Early to bed early to rise makes a man 
healthy, wealthy’ 
 
iii. Random Swap 
Implementation: 
From text augment import EDA 
 
eda_augment= EDA() 
 
Text = ‘Early to bed and early to rise makes a man healthy, 
wealthy and wise’ 
 
random_swap_augment=eda_augment.random_swap(Text) 
print(random_swap_augment) 
 
OUTPUT 
Original Text: ‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text: ‘Early to bed and early to rise makes a 
man wise, wealthy and healthy’ 
 
iv. Random Insertion 
Implementation: 
from text augment import EDA 
eda_augment= EDA() 

Text = ‘Early to bed and early to rise makes a man healthy, 
wealthy and wise’ 
 
rnd_insert_augment=eda_augment.random_insertion(Text) 
print(rnd_insert_augment) 
 
OUTPUT 
Original Text: ‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text: ‘Early to clean bed and early to rise 
makes a man healthy, wealthy and wise’’ 
 
e. Aug Ly 
AugLy package is released by Facebook to the public 
domain. It is a prevalent library that is divided into four sub-
libraries, each offering to a specific data mode. These sub 
libraries are audio, images, videos, and texts giving users a 
range of choices for data management [10]. 
 
Installation: 
pip install -U augly 
 
i. Replace Similar Characters 
Implementation: 
importaugly.textastextaugs 
Text = ‘Early to bed and early to rise makes a man healthy, 
wealthy and wise’ 
 
augly_aug=textaugs.replace_similar_chars(Text) 
print(augly_aug) 
Original Text: ‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text: ‘3arly to bed and early to 7ise makes a 
man healthy, wealthy and wise’ 
 
ii. Insert Punctuations 
Implementation: 
import augly. text as textaugs 
Text = ‘Early to bed and early to rise makes a man healthy, 
wealthy and wise’ 
 
augly_aug=textaugs.insert_punctuation_chars(Text) 
print(augly_aug) 
 
Original Text:‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text: ‘E.a.r.l.y. .t.o. b.e.d.. a.n.d.. e.a.r.l.y.  
.t.o..r.i.s.e..m.a.k.e.s..a..m.a.n..h.e.a.l.t.h.y,..w.e.a.l.t.h.y..a.n.
d..w.i.s.e.’ 
 
f. Parrot Paraphraser 
Parrot is a paraphrase-based augmentation framework which 
is built to accelerate training NLU models. It is more than 
just a simple paraphrasing model, however; it is designed to 
provide an extra layer of depth to NLU training. Parrot's 
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paraphrasing tool helps to create a variety of variations on a 
given sentence, allowing for more robust and expansive 
training. [12] 
 
Installation: 
pip install 
git+https://github.com/PrithivirajDamodaran/Parrot_Paraphr
aser.git 
 
Implementation: 
Parrot Paraphraser Implementation 
import torch 
from parrot import Parrot 
PARROT_PRETRAINED_MODEL = "prithivida/parrot_pa
raphraser_on_T5" 
parrot_model = Parrot(model_tag=PARROT_PRETRAINE
D_MODEL) 
PHRASE = "Can you recommend some great restaurants in 
Mumbai?" 
para_phrases = parrot_model.augment(input_phrase=PHRA
SE, use_gpu=False) 
for para_phrase in para_phrases: 
print(para_phrase) 
 
Original Text:‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text:  
('tell me the best place to eat in mumbai?', 41) 
('list some good restaurants in mumbai?', 32) 
('tell me the best restaurant in mumbai?', 32) 
('can you suggest some of the best restaurants in mumbai?', 
29) 
('can you list the best restaurants in mumbai?', 27) 
('recommend some good restaurant in mumbai?', 25) 
 
g. Pegasus Paraphraser 
PEGASUS is a standard Transformer encoder-decoder 
which uses GSG (Gated Self-attention Graph) for pre-
training on large corpora of documents [13].The encoder is 
trained to create a vector representation of the input 
sentence, while the decoder is trained to generate a response 
sentence given the vector representation of the input 
sentence. Both encoder and decoder are trained in a self-
supervised manner, with the goal of obtaining a model that 
can accurately reconstruct an input sentence [14]. 
 
Installation: 
Pip install transformers 

 
Pegasus Implementation: 
import torch 
from transformers import PegasusForConditionalGeneration
, PegasusTokenizer 
BEAM_NUM = 10 
RETURN_SEQ_NUM = 10 
PEGASUS_PRETRAINED_MODEL = 'tuner007/pegasus_
paraphrase' 
pegasus_tokenizer = PegasusTokenizer.from_pretrained(PE
GASUS_PRETRAINED_MODEL) 
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' 
pegasus_model = PegasusForConditionalGeneration.from_p
retrained(PEGASUS_PRETRAINED_MODEL).to(torch_d
evice) 
input_text = "Early to bed and early to rise makes a man we
althy, healthy and wise." 
 
batch = pegasus_tokenizer([input_text], truncation=True, pa
dding='longest', max_length=60, return_tensors="pt").to(tor
ch_device) 
translated = pegasus_model.generate(**batch, max_length=
60, num_beams=BEAM_NUM, num_return_sequences=RE
TURN_SEQ_NUM, temperature=1.5) 
tgt_text = pegasus_tokenizer.batch_decode(translated, skip_
special_tokens=True) 
for each_text in tgt_text: 
print(each_text) 
 
Original Text: ‘Early to bed and early to rise makes a man 
healthy, wealthy and wise’ 
Augmented Text:  
A man who is wealthy, healthy and wise can be found early 
to bed and early to rise. 
A man who sleeps early and rises early is wealthy, healthy 
and wise. 
A man is wealthy, healthy and wise if he sleeps early and 
rises early. 
A man is wealthy, healthy and wise if he sleeps early. 
A man is wealthy, healthy and wise when he is asleep and 
awake. 
A man is wealthy, healthy and wise if he is up early. 
A man is wealthy, healthy and wise if he is up early to bed 
and early to rise. 
A man is wealthy, healthy and wise when he is awake early. 
A man is wealthy, healthy and wise if he is awake early to 
bed and early to rise. 
A man is wealthy, healthy and wise if he is awake early. 
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IV. NLP AUGMENTATION LIBRARY COMPARISON 
Table 2. Library Comparison of NLP Augmentation 

Library Synonym 
Replaceme
nt 

Word 
Insertion/Substi
tution/Deletion 

Punctuation 
Insertion 

Character 
Insertion 

Augmentation 
using pre trained 
models 

TextAttack 
 

Yes Yes Yes Yes Yes 

NLPAug 
 

Yes Yes Yes Yes Yes 

Googletrans 
 

No No No No uses Google 
Translate Ajax 
API 

TextAugment 
 

Yes Yes Yes Yes Yes 

AugLy 
 

Yes Yes Yes Yes No 

Parrot 
Paraphraser 
 

No No No No Yes 

Pegasus 
Paraphraser 
 

No No No No Yes 

 
V. CONCLUSION: 

Data Augmentation in the field of NLP is widely used when 
there is scarcity of data. This survey study will help to know 
the basics of text data augmentation as well as the tools 
available for it and how to use it from its installation to 
implementation. In this study analysis table on all the tool is 
also present for anyone to decide which library to select as 
per their requirement. Implementation of the libraries 
feature with examples is done which will help for better 
understanding of features present. Hereafter, more analysis 
on it can be done to provide more deep knowledge about 
other tools available in market. Some standard datasets can 
also be taken and evaluate performance of each tool and 
analyze it’s result. 
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