
International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 47-56

Published Online June 2023 in IJEAST (http://www.ijeast.com)

47

SURVEY ON COMPREHENSIVE TECHNIQUES
OF TEXT DATA AUGMENTATION

Ritu Khare, Anshuman Mahapatra

Data and AI
Advanced Technology Centers in India, Accenture

Email: ritu.khare@accenture.com
Email: anshuman.a.mahapatra@accenture.com

Abstract: In the world of Data Science and machine
learning everything starts with data and how well one
can use it to get the desired output. But what can be
done when enough data is not present. Obviously,
overall result will get impacted because of scarcity of
data. Hence, to resolve this problem, data augmentation
comes into picture which helps to increase dataset size
by augmenting it. Data augmentation is an assortment of
techniques that facilitates to automatically generate high
quality data with the help of existing data. In the field of
Natural Language Processing (NLP) is difficult to
augment the text due to huge complexity of language.
The process of augmenting text data is more challenging
and not as straightforward as one might expect. In this
study, the way of doing NLP data augmentation and
libraries available for it is explored. Data augmentation
techniques, comparison and features of the python
libraries which can be used for data augmentation is
discussed. It will help researchers and data scientist to
decide which library to use for their job.

Keywords: Natural Language Processing (NLP), Text
Data Augmentation, Data Augmentation Libraries,
Training Data Augmentation

I. INTRODUCTION
Data is essential for machine learning models to perform
optimally, but annotating a large amount of data can be a
costly endeavor. It is important to not only focus on having
a lot of data but having the right data and the right
techniques to ensure the best performance possible.
Therefore, proper data augmentation is useful to boost up
model performance [1]. Augmentation is an immensely
popular technique in the computer vision field. It involves
the alteration of an image to create a new one. This can be
done in many ways, such as flipping, adding noise,
adjusting the brightness and contrast, and cropping.
Augmentation can be used to help reduce over fitting,
making models more robust. It is established that
augmentation is one of the solutions to the success of
computer vision models.

In natural language processing (NLP), text augmentation is
a difficult task to undertake due to the complexity of the
language. While some words can be replaced with others,
such as a, an, the, this is often not sufficient to adequately
enhance a piece of text. Also, not every word has a synonym
[2]. The complexities of language are vast, making it
difficult to know which words to choose when attempting to
alter the meaning of a sentence. Even the slightest variation
in word choice can have a remarkable effect on the context
of a statement. Additionally, the context of the sentence
must be considered to ensure that the meaning is preserved.
It is for these reasons that text augmentation is especially
difficult in the field of NLP. Alternatively, augmented
images can be generated relatively easily using computer
vision. Even when noise is introduced or portions of the
image are cropped out, the model can still classify the image
correctly. Data Augmentation (DA) Technique is an
effective way of increasing the size and quality of a dataset
without having to manually collect more data. The data
needs to be altered to preserve the class categories for better
performance in the classification task [3].
Data augmentation is a powerful tool for improving the
performance of machine learning models. By increasing the
size of the training data, it can help to create better models
that are more robust and perform better on unseen data.
However, when augmenting data, it is important to ensure
that the distribution of the augmented data generated is
neither too similar nor too different from the original as this
can lead to over fitting or inferior performance. Effective
data augmentation approaches should aim to achieve a
balance between the two, as this can help to ensure that the
model has seen a variety of different data points.
If you have a tiny dataset, data augmentation can be a
particularly effective way of increasing the size of the
training set. This can help to improve the model's
performance and help to reduce the risk of over fitting.
Additionally, data augmentation can help to ensure that the
model has seen a variety of different data points, which can
help to improve the model's generalization performance. By
making sure that the data is neither too similar nor too
different from the original, it can help to ensure that the
model is able to make accurate predictions on unseen data.

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 47-56

Published Online June 2023 in IJEAST (http://www.ijeast.com)

48

It may be a promising idea to apply data augmentation
approaches for small dataset with aim to reduce over fitting
in machine learning models.

II. TEXT DATA AUGMENTATION:

Data Augmentation can create more data for machine
learning project. In the field of text data augmentation there
are many methods available on character, word and sentence
level to generate quality data without losing the meaning
and context of original text. It gives a promising result in
terms of quality as well as quantity of data if done wisely
based on requirement and available data. There are various
techniques to do so. Let’s discuss them in detail.

1.1 Text Data Augmentation Methods:

 Fig 1. Data Augmentation Methods in Feature and Data Space

1.1.1 Data Augmentation in Feature Space
In the feature space, data augmentation is the process of
transforming the input data into latent vector representations
(feature form) of the inputs. The feature space has two types
of data augmentation: noise induction and interpolation [4].

Noise Induction: In the data space, noise can be introduced
in many ways, and the feature space is no different. It is
possible to introduce random multiplicative and additive
noise to feature representations, which can give a variety of
results. These noise variants can be used to measure the
robustness of a model, as well as to improve performance on
certain tasks. Additionally, artificially introducing noise can
also help to reduce the risk of over fitting, as it can help to
better generalize the learned model.

Interpolation Methods: In this method a new sentence can
be created by taking the hidden states of two sentences and

combining them, resulting in a sentence that retains the
meaning of both original sentences.

1.1.2 Data Augmentation in Data Space
Data augmentation in the data space allows for the
transformation of raw data into a more readable and usable
form. There are four types of data augmentation techniques
available in the data space: character level, word level,
phrase and sentence level, and document level [5].

Character Level
In the case of character-level augmentation creating new
training samples from existing ones by changing single
characters. This is done by randomly selecting characters
from the existing sample and replacing them with new ones.
This technique can be especially useful when the dataset is
small or limited. By randomly changing characters, a variety

Data Augmentation Methods

Feature Space

Noise
Induction

Interpolation
Methods

Data Space

Character Level

Noise
Induction

Rule-
based

Word Level

Noise
Induction

Synonym
Replacem

ent

Embeddin
g

Replacem
ent

Replacem
ent by

language
models

Phrase or Sentence
Level

Struture
BasedTra
nsformati

on

Interpolat
ion

Document Level

Round
trip

translatio
n

Generativ
e Models

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 47-56

Published Online June 2023 in IJEAST (http://www.ijeast.com)

49

of new samples can be created that can help model to better
generalize and learn from different types of data.

• Noise Induction: It involves random character

deletion, swap, and insertion.
• Rule-based Transformations: Regular expressions

can be used to insert spelling mistakes, alter data,
abbreviate entity names, and insert spelling mistakes.

Word Level
In this type of data augmentation, single words are changed

entirely to create new training samples from existing
ones [6].

• Noise Induction:"Unigram noising" involves replacing
words in input data with another word with a certain
probability. Using "blank noise", words are replaced
with "_", while random word substitutions and
deletions are also methods of inducing noise.

• Synonym Replacement: In this very popular form of
data augmentation, certain words are replaced with
synonyms in text instances. Synonym replacement is
usually performed using knowledge bases like
WordNet.

• Embedding Replacement: Comparable to synonym
substitution, embedding replacement methods seek to
find words that fit into the textual context without
changing the fundamental meaning of the text. This is
done by transforming words into a latent representation
space, where words with similar contexts are closer
together. Then, a word is replaced by the one which is
closest to it in the latent representation space. This
ensures that the contextual meaning of the text remains
the same while still providing the desired level of
variation.

• Replacement by Language Models: Language models
represent language by predicting subsequent or missing
words based on the previous or surrounding context.
This allows them to be used to filter unfitting words and
produce more accurate results than those obtained via
global context-based embedding replacements. By
focusing on the local context, language models can
improve the accuracy of language understanding and
filtering of bad words produced with the embedding
replacement techniques.

Phrase and Sentence Level
This type of data augmentation consists of changing
sentence structures to create new training samples [15].
• Structure-based Transformation: The structure-based

approach to data augmentation involves the use of
certain features or components of the structures to
generate modified texts. Grammatical formalities, such
as dependency and constituent grammars or POS-tags,
can be used as the basis for such structures. One

method of data augmentation is cropping sentences and
putting the focus on the subjects and objects. The
'rotation' technique is a flexible method that involves
moving fragments of words around. This approach is
useful as it can generate new sentences from existing
ones, allowing for the creation of a larger data set. It
also allows for different contexts and relationships to be
explored.

• Interpolation: This method of natural language
processing works by substituting substructures of the
training examples that have the same tagged label. For
instance, an example sentence substructure of "a [DT]
chocolate [NN]" (where [DT] and [NN] are Determiner
and Singular Noun respectively) can be replaced with a
new sentence substructure of "a [DT] cat [NN]" from
another instance, resulting in an interpolation. This
substitution process allows for additional insight as to
the relationship between different words with the same
tag. By replacing words with similar tags, it can be
determined how two words might be related to one
another. Additionally, this process helps to create a
larger, more diverse dataset that can be used to train a
machine learning model.

Document Level
The purpose of this type of data augmentation is to create
new training samples from existing ones by modifying
entire sentences in the documents.
• Round-trip Translation: Round-trip translation is an

approach to creating paraphrases with the assistance of
translation models. In this approach, a word, phrase,
sentence, or document is translated from its source
language into another language (forward translation)
and then reversed back into the source language (back-
translation). This method allows to produce multiple
paraphrases that adhere to the same meaning of the
original source, while also providing a unique spin on
the wording. As such, round-trip translation is a
valuable tool for creating more accurate translations
and paraphrases.

• Generative Methods: A significant increase in
language generation capabilities allowed the current
models to create very diverse texts that can incorporate
new information, which in turn led to a significant
increase in text generation capabilities. A document-
level data augmentation method uses training language
models (VAEs, RNNs, Transformers) to produce
documents that look like the training data.[16]

III. TEXT DATA AUGMENTATION LIBRARIES

There are several types of data augmentation libraries
present based on the feature types and tasks user want to
perform. We'll look at some of them:
a. Text Attack

https://arxiv.org/abs/1711.02173
https://arxiv.org/abs/1812.04718
https://arxiv.org/abs/1703.02573
https://aclanthology.org/P11-2047/
https://dl.acm.org/doi/10.1145/3357384.3358040
https://arxiv.org/abs/1804.07998
https://arxiv.org/abs/1903.09460
https://arxiv.org/abs/2101.00411
https://www.semanticscholar.org/paper/The-Efficacy-of-Round-trip-Translation-for-MT/2006dd307e7fb67d731e3a984dea405d25b250ac
https://dl.acm.org/doi/abs/10.1145/3366424.3383552

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 47-56

Published Online June 2023 in IJEAST (http://www.ijeast.com)

50

b. NLP Aug
c. Google Trans
d. Text Augment
e. Aug Ly
f. Parrot Paraphraser
g. Pegasus Paraphraser

a. Text Attack
It is a Python library. It is used for combative attacks,
combative training, and data augmentation in NLP. Text
attack has a text attack. Augmenter class which provides six
different approaches for data augmentation[7].

Text attack installation
!pip install text attack

i. Word Net Augmenter
The WordNet augmenter identifies synonyms from
WordNet and replaces them with the appropriate words.

Implementation:
From text attack.augmentation import WordNetAugmenter
orignal_text = "Early to bed and early to rise makes a man
healthy, wealthy and wise"
text_attack_wordnet = WordNetAugmenter()
augmented_text_attack_wordnet.augment(orignal_text)
print(augumented_text)

OUTPUT
Original Text:‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text: [‘Early to bed and early to rise makes a
man healthful, wealthy and wise’]

ii. Embedding Augmenter
This augmenter replaces words with neighbors in the
counter-fitted embedding space to ensure their consine
similarity is at least 0.8

Implementation:
from textattack.augmentation import EmbeddingAugmenter
text_attack_embed = EmbeddingAugmenter()
augmented_text=text_attack_embed.augment(orignal_text)
print(augumented_text)

OUTPUT
Original Text:‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text: [‘Early to bed and early to wake up
makes a man healthy, wealthy and wise’]

iii. Easy Data Augmenter

EDA augments text by replacing words, adding words, and
removing words.

Implementation:
from textattack.augmentation import EasyDataAugmenter
text_attack_eda = EasyDataAugmenter()
text_attack_eda.augment(text)
Original Text: ‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text: [‘Early to bed early to rise makes a man
healthy, wealthy and wise’,
‘Early to bed and early to rise makes a man healthy,
prosperous and wise’,
‘Early to bed and early to rise makes a man healthy, wealthy
and intelligent’,
‘Early to bed and early to rise makes a gentle man strong,
wealthy and intelligent’]

iv. Char Swap Augmenter
As parts of the augmentation process, it replaces, deletes,
inserts, and swaps adjacent characters as needed.

Implementation:
from textattack.augmentation import CharSwapAugmenter
text_attack_charswap = CharSwapAugmenter()
text_attack_charswap.augment(text)
Original Text:‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text: ‘Early to bed and early to rise amkes a
man healthy, wealthy and wise’

v. Check List Augmenter
Names, locations, and numbers are compressed/extended
and substituted in this augmenter.

Implementation:
from textattack.augmentation import Check List Augmenter
text_attack_checklist = Check List Augmenter()
text_attack_checklist.augment(text)

Original Text: ‘Early to bed and early to rise makes a man
healthy, wealthy and wise’

Augmented Text: ‘Early to bed and early to rise makes a
man healthy, wealthy and wise’

vi. CLARE Augmenter

Using a pre-trained masked language model, it augments
text by replacing, inserting, and merging.

Implementation:
from textattack.augmentation import CLAREAugmenter
text_attack_clare = CLAREAugmenter()
print(text_attack_clare.augment(text))

Original Text:‘Early to bed and early to rise makes a man
healthy, wealthy and wise’

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 47-56

Published Online June 2023 in IJEAST (http://www.ijeast.com)

51

Augmented Text: ‘Early to bed and early to rise makes a
man extremely healthy, wealthy and wise’

b. NLPAug
It is a python-based augmentation library for machine
learning experiments based on text. NLP Aug is a tool that
can assist in this process by enhancing natural language
processing (NLP) for machine learning applications.
Besides generating textual data for training and testing
models, it can generate adversarial examples that can be
used to identify and prevent adversarial attacks. NLP Aug is
a powerful tool for improving deep learning model

performance and ensuring the security of machine learning
applications. Let’s look at how to use this library to enhance
data.[8]

NLP Aug installation
!pip install nlpaug

NLP Aug provides basically three distinct types of
augmentation based on character, word and sentence
augmentation. Below is a list of available augmenters
mapped with the type of augmentation:

Table 1.NLPAug Augmenters and its description

NLP Aug Augmenters Type of Augmentation
Antonym Aug Substitute opposite meaning word according to WordNet

antonym
Random Aug Apply insert, substitute, swap, delete augmentation

randomly
Character Keyboard Aug It substitutes by Simulating keyboard distance error
Ocr Aug It substitutes by OCR engine error
Word Embs Aug It substitutes, insert using word2vec, GloVe, or fast text

embeddings to apply augmentation

i. Antonym Aug:
Implementation:
import nlpaug.augmenter.word as nawordaug = naword.Ant
onymAug(name='Antonym_Aug', aug_min=1, aug_max=10
, aug_p=0.3, lang='eng', stopwords=None, tokenizer=None,
revee_=None, stopwords_regex=None, verbose=0)
test_sentence_aug = aug.augment("too dark")
print(test_sentence_aug)

Original Text:"too dark"
Augmented Text:['too light']

ii. Random Aug:
Implentation:
import nlpaug.augmenter.word as naword
Text = 'Early to bed and early to rise makes a man healthy,
wealthy and wise'
aug = naword.RandomWordAug(action='delete', name='Ran
domWord_Aug', aug_min=1, aug_max=10, aug_p=0.3, stop
words=None, target_words=None, tokenizer=None, reverse
_tokenizer=None, stopwords_regex=None, verbose=0)
output = aug.augment (Text)
print(output)

Original Text: ‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text:['To and to rise makes a, wealthy and
wise']

iii. Keyboard Aug:

Implementation:
import nlpaug.augmenter.char as na
Text='Early to bed and early to rise makes a man healthy,we
althy and wise'
aug = na.KeyboardAug(name='Keyboard_Aug', aug_char_
min=1, aug_char_max=10, aug_char_p=0.3, aug_word_p=0
.3, aug_word_min=1, aug_word_max=10, stopwords=None,
 tokenizer=None, reverse_tokenizer=None, include_special_
char=True, include_numeric=True, include_upper_case=Tru
e, lang='en', verbose=0, stopwords_regex=None, model_pat
h=None, min_char=4)
output = aug.augment(Text)
print(output)
Original Text:‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text:['EaGlJ to bed and eq$ly to ejsemsJes a
man healthy, wealthy and SKse']

iv. Ocr Aug:
Implementation:
import nlpaug. augmenter. char as na
Text = 'Early to bed and early to rise makes a man healthy,
wealthy and wise'
aug = na.OcrAug(name='OCR_Aug', aug_char_min=1, aug
_char_max=10, aug_char_p=0.3, aug_word_p=0.3, aug_wor
d_min=1,
 aug_word_max=10, stopwords=None, tokenizer=
None, reverse_tokenizer=None, verbose=0, stopwords_rege
x=None,
 min_char=1)

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 47-56

Published Online June 2023 in IJEAST (http://www.ijeast.com)

52

output = aug.augment(Text)
print(output)

Original Text: ‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text: ['Early tu bed and eak1y to rise makes a
man hea1thy, wealthy and wise']

v. Word Embs Aug
Implementation:
!pip install transformers
import nlpaug. augmenter. word as naword
TOPK=20 #default=100
ACT = 'insert' #"substitute"
Text = 'Early to bed and early to rise makes a man healthy,
wealthy and wise'
aug_bert = naword.ContextualWordEmbsAug(model_path='
distilbert-base-uncased',action=ACT, top_k=TOPK)
for i in range(7):
output = aug_bert.augment(Text)
print(output)

Original Text: ‘Early to bed and early to rise makes a man
healthy, wealthy and wise’

Augmented Text:
['early steps to bed early and early to rise sun makes a man
very healthy, wealthy citizen and wise']
['early to bed and very early to early rise he makes up a man
reasonably healthy, wealthy and wise']
['early transition to bed habits and sometime early to mid
rise makes a man healthy, wealthy looking and wise']
['early to bed hours and relatively early to rise makes a rich
man reasonably healthy, wealthy and relatively wise']
['happy early retirement to reach bed rest and early to rise
makes a healthy man healthy, wealthy and wise']
['early exposure to bed and early to nightly rise gradually
makes that a man grow healthy, wealthy and wise']
['mornings early to bed and early to dusk rise makes a man
extremely healthy, economically wealthy and morally wise']

c. Google trans
 Itis built on top of Google Translate API. This uses Google
Translate Ajax API for language detection and translation.
[9]

Installation
!pip install google trans

Usage
The key parameters to translate() method are:
src: source language. Optional parameter as googletrans will
detect it.
dest: destination language. Mandatory parameter.

text: the text which has to be translated from source
language to the destination language. Mandatory parameter.

Implementation:
Translation from English to Chinese
from googletrans import Translator
translator = Translator()
my_translation = translator.
translate("Early to bed and early to rise makes a man wealth
y, healthy and wise.", src='en', dest='zh-CN')
print(my_translation.text)
OUTPUT:
早睡早起使人富有、健康和聪明。

Translation from Chinese back to English
From google trans import Translator
translator = Translator()
my_translation = translator.
translate("早睡早起使人富有、健康和聪明。", src='zh-
CN', dest='en')
print(my_translation.text)

OUTPUT:
Early to bed and early to rise makes a man rich, healthy and
wise.
As in the above implementation, the given text is first
translated from English to Chinese and then translated back
to English. During this back translation, there is a slight
change in the sentence between the original text and the
back-translated text, but the overall meaning of the sentence
is still retained.
Original Text: ‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text: ‘Early to bed and early to rise makes a
man rich, healthy and wise.’

d. Text Augment
The Text Augment library provides text augmentation for
natural language processing use in Python. It enables users
to add more data quickly and easily to their existing
datasets. Text Augment provides a wide range of features
including text generation, text substitution, text insertion,
and text deletion. Text Augment works with the help of
libraries like NLTK, Gensim, and Text Blob and works well
with them.[11]

Installation:
pip install num pynltkgensim text blobgoogletrans text
augment

i. Synonym Replacement
Implementation:
from text augment import EDA

https://translate.google.com/
https://translate.google.com/

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 47-56

Published Online June 2023 in IJEAST (http://www.ijeast.com)

53

eda_augment= EDA()
Text = ‘Early to bed and early to rise makes a man healthy,
wealthy and wise’
Text_augument_syn=eda_augment.synonym_replacement(
Text)
print(Text_augument_syn)

OUTPUT
Original Text:‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text: ‘Early to bed and early to rise makes a
man nutritious, wealthy and wise’

ii. Random Deletion
Implementation:
from text augment import EDA
eda_augment= EDA()

Text = ‘Early to bed and early to rise makes a man healthy,
wealthy and wise’

random_del_augment=eda_augment.random_deletion(Text,
p=0.2)

print (random_del_augment)

OUTPUT
Original Text:‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text: ‘Early to bed early to rise makes a man
healthy, wealthy’

iii. Random Swap
Implementation:
From text augment import EDA

eda_augment= EDA()

Text = ‘Early to bed and early to rise makes a man healthy,
wealthy and wise’

random_swap_augment=eda_augment.random_swap(Text)
print(random_swap_augment)

OUTPUT
Original Text: ‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text: ‘Early to bed and early to rise makes a
man wise, wealthy and healthy’

iv. Random Insertion
Implementation:
from text augment import EDA
eda_augment= EDA()

Text = ‘Early to bed and early to rise makes a man healthy,
wealthy and wise’

rnd_insert_augment=eda_augment.random_insertion(Text)
print(rnd_insert_augment)

OUTPUT
Original Text: ‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text: ‘Early to clean bed and early to rise
makes a man healthy, wealthy and wise’’

e. Aug Ly
AugLy package is released by Facebook to the public
domain. It is a prevalent library that is divided into four sub-
libraries, each offering to a specific data mode. These sub
libraries are audio, images, videos, and texts giving users a
range of choices for data management [10].

Installation:
pip install -U augly

i. Replace Similar Characters
Implementation:
importaugly.textastextaugs
Text = ‘Early to bed and early to rise makes a man healthy,
wealthy and wise’

augly_aug=textaugs.replace_similar_chars(Text)
print(augly_aug)
Original Text: ‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text: ‘3arly to bed and early to 7ise makes a
man healthy, wealthy and wise’

ii. Insert Punctuations
Implementation:
import augly. text as textaugs
Text = ‘Early to bed and early to rise makes a man healthy,
wealthy and wise’

augly_aug=textaugs.insert_punctuation_chars(Text)
print(augly_aug)

Original Text:‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text: ‘E.a.r.l.y. .t.o. b.e.d.. a.n.d.. e.a.r.l.y.
.t.o..r.i.s.e..m.a.k.e.s..a..m.a.n..h.e.a.l.t.h.y,..w.e.a.l.t.h.y..a.n.
d..w.i.s.e.’

f. Parrot Paraphraser
Parrot is a paraphrase-based augmentation framework which
is built to accelerate training NLU models. It is more than
just a simple paraphrasing model, however; it is designed to
provide an extra layer of depth to NLU training. Parrot's

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 47-56

Published Online June 2023 in IJEAST (http://www.ijeast.com)

54

paraphrasing tool helps to create a variety of variations on a
given sentence, allowing for more robust and expansive
training. [12]

Installation:
pip install
git+https://github.com/PrithivirajDamodaran/Parrot_Paraphr
aser.git

Implementation:
Parrot Paraphraser Implementation
import torch
from parrot import Parrot
PARROT_PRETRAINED_MODEL = "prithivida/parrot_pa
raphraser_on_T5"
parrot_model = Parrot(model_tag=PARROT_PRETRAINE
D_MODEL)
PHRASE = "Can you recommend some great restaurants in
Mumbai?"
para_phrases = parrot_model.augment(input_phrase=PHRA
SE, use_gpu=False)
for para_phrase in para_phrases:
print(para_phrase)

Original Text:‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text:
('tell me the best place to eat in mumbai?', 41)
('list some good restaurants in mumbai?', 32)
('tell me the best restaurant in mumbai?', 32)
('can you suggest some of the best restaurants in mumbai?',
29)
('can you list the best restaurants in mumbai?', 27)
('recommend some good restaurant in mumbai?', 25)

g. Pegasus Paraphraser
PEGASUS is a standard Transformer encoder-decoder
which uses GSG (Gated Self-attention Graph) for pre-
training on large corpora of documents [13].The encoder is
trained to create a vector representation of the input
sentence, while the decoder is trained to generate a response
sentence given the vector representation of the input
sentence. Both encoder and decoder are trained in a self-
supervised manner, with the goal of obtaining a model that
can accurately reconstruct an input sentence [14].

Installation:
Pip install transformers

Pegasus Implementation:
import torch
from transformers import PegasusForConditionalGeneration
, PegasusTokenizer
BEAM_NUM = 10
RETURN_SEQ_NUM = 10
PEGASUS_PRETRAINED_MODEL = 'tuner007/pegasus_
paraphrase'
pegasus_tokenizer = PegasusTokenizer.from_pretrained(PE
GASUS_PRETRAINED_MODEL)
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
pegasus_model = PegasusForConditionalGeneration.from_p
retrained(PEGASUS_PRETRAINED_MODEL).to(torch_d
evice)
input_text = "Early to bed and early to rise makes a man we
althy, healthy and wise."

batch = pegasus_tokenizer([input_text], truncation=True, pa
dding='longest', max_length=60, return_tensors="pt").to(tor
ch_device)
translated = pegasus_model.generate(**batch, max_length=
60, num_beams=BEAM_NUM, num_return_sequences=RE
TURN_SEQ_NUM, temperature=1.5)
tgt_text = pegasus_tokenizer.batch_decode(translated, skip_
special_tokens=True)
for each_text in tgt_text:
print(each_text)

Original Text: ‘Early to bed and early to rise makes a man
healthy, wealthy and wise’
Augmented Text:
A man who is wealthy, healthy and wise can be found early
to bed and early to rise.
A man who sleeps early and rises early is wealthy, healthy
and wise.
A man is wealthy, healthy and wise if he sleeps early and
rises early.
A man is wealthy, healthy and wise if he sleeps early.
A man is wealthy, healthy and wise when he is asleep and
awake.
A man is wealthy, healthy and wise if he is up early.
A man is wealthy, healthy and wise if he is up early to bed
and early to rise.
A man is wealthy, healthy and wise when he is awake early.
A man is wealthy, healthy and wise if he is awake early to
bed and early to rise.
A man is wealthy, healthy and wise if he is awake early.

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 47-56

Published Online June 2023 in IJEAST (http://www.ijeast.com)

55

IV. NLP AUGMENTATION LIBRARY COMPARISON
Table 2. Library Comparison of NLP Augmentation

Library Synonym
Replaceme
nt

Word
Insertion/Substi
tution/Deletion

Punctuation
Insertion

Character
Insertion

Augmentation
using pre trained
models

TextAttack

Yes Yes Yes Yes Yes

NLPAug

Yes Yes Yes Yes Yes

Googletrans

No No No No uses Google
Translate Ajax
API

TextAugment

Yes Yes Yes Yes Yes

AugLy

Yes Yes Yes Yes No

Parrot
Paraphraser

No No No No Yes

Pegasus
Paraphraser

No No No No Yes

V. CONCLUSION:

Data Augmentation in the field of NLP is widely used when
there is scarcity of data. This survey study will help to know
the basics of text data augmentation as well as the tools
available for it and how to use it from its installation to
implementation. In this study analysis table on all the tool is
also present for anyone to decide which library to select as
per their requirement. Implementation of the libraries
feature with examples is done which will help for better
understanding of features present. Hereafter, more analysis
on it can be done to provide more deep knowledge about
other tools available in market. Some standard datasets can
also be taken and evaluate performance of each tool and
analyze it’s result.

VI. REFERENCES

[1]. Data Augmentation In NLP, https://towards data
science.com/data-augmentation-in-nlp-
2801a34dfc28

[2]. Text Data Augmentation in Natural Language
Processing with Texattack,
https://www.analyticsvidhya.com/blog/2022/02/tex
t-data-augmentation-in-natural-language-
processing-with-
texattack/#:~:text=Data%20Augmentation%20(DA
)%20Technique%20is,performance%20in%20the%
20classification%20task.

[3]. 5 Data Augmentation Techniquesfor
TextClassification,
https://saurabhk30.medium.com/5-data-

augmentation-techniques-for-text-classification-
d14f6d8bd6aa

[4]. Data Augmentationfor
NLP,https://blog.paperspace.com/data-
augmentation-for-nlp/

[5]. Howtoperform Data Augmentationin NLP
Projects,https://freecodecamp.org/news/how-to-
perform-data-augmentation-in-nlp-projects/

[6]. Data Augmentation NLP,
https://neptune.ai/blog/data-augmentation-nlp

[7]. Text Data Augmentation in natural language
processing with Texattack, https:/
/analyticsvidhya.com/blog/2022/02/text-data-
augmentation-in-natural-language-processing-with-
texattack/

[8]. nlpaug-A Pythonlibrarytoaugmentyourtextdata,
https://www.analyticsvidhya.com/blog/2021/08/nlp
aug-a-python-library-to-augment-your-text-data/

[9]. Text Data
Augmentation,https://towardsdatascience.com/text-
data-augmentation-f4143571ecd2

[10]. Howtouseauglyonimage, video,
audioandtext,https://analyticsarora.com/how-to-
use-augly-on-image-video-audio-and-text/

[11]. NLP Data
Augmentation,https://pemagrg.medium.com/nlp-
data-augmentation-a346479b295f

[12]. ParrotParaphraser,
https://github.com/PrithivirajDamodaran/Parrot_Pa
raphraser

https://towards/

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 47-56

Published Online June 2023 in IJEAST (http://www.ijeast.com)

56

[13]. Pegasus Paraphrase,
https://huggingface.co/tuner007/pegasus_paraphras
e

[14]. Jingqing Zhang, Yao Zhao, Mohammad Saleh,
Peter J. Liu: PEGASUS: Pre-training with
Extracted Gap-sentences for Abstractive
Summarization, https://arxiv.org/abs/1912.08777

[15]. Steven Y. Feng, Varun Gangal, Jason Wei,
SarathChandar, Soroush Vosoughi, Teruko
Mitamura, Eduard Hovy: A Survey of Data
Augmentation Approaches for NLP
https://arxiv.org/pdf/2105.03075v5.pdf

[16]. Connor Shorten, Taghi M. Khoshgoftaar and
BorkoFurht: Text Data Augmentation for Deep
Learning
https://journalofbigdata.springeropen.com/articles/
10.1186/s40537-021-00492-0

